Effects of Water-Saving Irrigation on Direct-Seeding Rice Yield and Greenhouse Gas Emissions in North China

Author:

Hang Xiaoning,Danso Frederick,Luo Jia,Liao Dunxiu,Zhang Jian,Zhang Jun

Abstract

Rice cultivation consumes more than half of the planet’s 70% freshwater supply used in agricultural production. Competing water uses and climate change globally are putting more pressure on the limited water resources. Therefore, water-saving irrigation (WSI) is recommended for rice production in water scares areas. The impact of WSI techniques on direct-seeding rice production and greenhouse gas emissions in North China is becoming increasingly important in the era of climate change. Therefore, we conducted a two-year field experiment on directly seeded rice to assess the impact of traditional flooding irrigation (CK) and three water saving irrigation (WSI) methods, including drip irrigation with an irrigation amount of 50 mm (DI1) and 35 mm (DI2) at each watering time and furrow wetting irrigation (FWI), on rice yield and greenhouse emissions. Generally, the WSI techniques decreased the number of rice panicles per m−2, spikelet per panicle, 1000-grain weight and rice yield compared to CK. Rice yield and yield components of (DI1) were significantly higher than (DI2). The adoption of either (DI1) or (FWI) showed insignificant variation in terms of rice yield and its yield components measured except for 1000-grain weight. The water productivity was 88.9, 16.4 and 11.4% higher in the FWI plot than the CK, DI1 and DI2 plots, respectively. The WSI decreased cumulative CH4 emission significantly by 73.0, 84.7 and 64.4% in DI1, DI2 and FWI, respectively, in comparison with CK. The usage of DI2 triggered 1.4 and 2.0-fold more cumulative N2O emission compared to DI1 and FWI, respectively. Area-scaled emission among the water-saving irrigation methods showed no significance. The yield-scaled emission in DI1 and DI2 and FWI were 101, 67.5 and 102%, respectively, significantly lower than CK. The adoption of FWI produced an acceptable rice yield with the lowest yield-scaled emission and highest water productivity among the irrigation practices. Our experiment demonstrates that dry direct-seeding with furrow irrigation can impact triple-wins of sustainable rice yield, high water-use efficiency and low GHG emissions in North China.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3