Enhancing Zinc Biofortification of Wheat through Integration of Zinc, Compost, and Zinc-Solubilizing Bacteria

Author:

Khalid Shah,Amanullah ORCID,Ahmed IftikharORCID

Abstract

Zinc (Zn) deficiency is a fairly widespread agronomic constraint in many of the world’s cereal (wheat, rice, corn, barley, etc.) production regions. Zinc is an imperative micronutrient required for optimum plant growth and development. Low Zn availability in about 50% of global land has resulted in Zn deficiency in cereal grains. A two-year field experiment was conducted at the Agronomy Research Farm, The University of Agriculture, Peshawar, during Rabi season 2018–19 (Y1) and 2019–20 (Y2) to study the impact of Zn levels (0, 5, 10 and 15 kg Zn ha−1), compost types (control, composted sheep manure (SMC), composted poultry manure (PMC) and farmyard manure compost (FYMC), and Zn-solubilizing bacteria (ZnSB) (with (+) and without (-) on Zn biofortification in order to overcome Zn deficiency. The experiment was set up in three replications in a randomized complete block design. The wheat variety “Pirsabak-2013” was planted in a 30 cm row-to-row spacing. The plot size was kept at 9 cm2, with 10 rows plot−1, and the seed was sown at a rate of 100 kg ha−1. The results showed that ZnSB application increased ShZnC (shoot Zn concentration) to a maximum level of 29.3 mg kg−1, ShZnUp (shoot Zn uptake) to 176.0 g ha−1, SZnUp (straw Zn uptake) to 116.67 g ha−1, and TZnUp (total Zn uptake) to 230.3 g ha−1. In the case of compost types, PMC resulted in maximum grain Zn uptake (GZnUp) (28.9 mg kg−1), ShZnUp (192.9 g ha−1), GZnC (33.4 mg kg−1), GZnUp (125.06 g ha−1), SZnUp (125.26 g ha−1), and TZnUp (250.3 g ha−1). In the case of Zn levels, higher ShZnC (31.5 mg kg−1), ShZnUp (191.3 g ha−1), GZnC (34.4 mg kg−1), SZnC (23.5 mg kg−1), GZnUp (128.98 g ha−1), SZnUp (129.29 g ha−1), and TZnUp (258.3 g ha−1) were calculated with the use of the highest rate of 15 kg Zn ha−1, which was either statistically similar to or followed by 10 kg Zn ha−1. A strong positive correlation was found among uptake by different plant parts (ZnG, ZnS, ShZnUp, GZnUp, SZnUp, and TZnUp). It was concluded that the combined application of PMC and 10 kg Zn ha−1 along with ZnSB (+) improved Zn biofortification and uptake in wheat crop under Zn-deficient soils.

Funder

Higher Education Commission

PhD Merit Fellowships, by the Higher Education Commission (HEC), Islamabad

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference98 articles.

1. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps;Graham;Adv. Agron.,2001

2. Breeding for micronutrients in staple food crops from a human nutrition perspective

3. Biofortification and Localization of Zinc in Wheat Grain

4. Biofortification: A New Tool to Reduce Micronutrient Malnutrition

5. Agronomic biofortification of cereals with zinc: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3