Human–Robot Skill Transferring and Inverse Velocity Admittance Control for Soft Tissue Cutting Tasks

Author:

Liu Kaidong12ORCID,Xie Bin12,Chen Zhouyang12,Luo Zhenhao12,Jiang Shan13,Gao Zhen13

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. State Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100083, China

3. Key Laboratory of Agricultural Equipment for Conservation Tillage, Ministry of Agricultural and Rural Affairs, Beijing 100083, China

Abstract

Robotic meat cutting is increasingly in demand in meat industries due to safety issues, labor shortages, and inefficiencies. This paper proposes a multi-demonstration human–robot skill transfer framework to address the flexible and generalized cutting of sheep hindquarters with complex 3D anatomy structures by imitating humans. To improve the generalization with meat sizes and demonstrations and extract target cutting behaviors, multi-demonstrations of cutting are encoded into low-dimension latent space through principal components analysis (PCA), Gaussian mixture model (GMM), and Gaussian mixture regression (GMR). To improve the robotic cutting flexibility and the cutting behavior reproducing accuracy, this study combines a modified dynamic movement primitive (DMP) high-level behavior generator with the low-level joints admittance control (AC) through real-time inverse velocity (IV) kinematics solving and constructs the IVAC-DMP control module. The experimental results show that the maximum residual meat thickness in the sheep hindquarter cutting of sample 1 is 3.1 mm, and sample 2 is 3.8 mm. The residual rates of samples 1 and 2 are 5.6% and 4.8%. Both meet the requirements for sheep hindquarter separation. The proposed framework is advantageous for harvesting high-value meat products and providing a reference technique for robot skill learning in interaction tasks.

Funder

National Key Research and Development Plan of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3