Motion Planning of the Citrus-Picking Manipulator Based on the TO-RRT Algorithm

Author:

Liu ChengORCID,Feng QingchunORCID,Tang ZuoliangORCID,Wang Xiangyu,Geng Jinping,Xu Lijia

Abstract

The working environment of a picking robot is complex, and the motion-planning algorithm of the picking manipulator will directly affect the obstacle avoidance effect and picking efficiency of the manipulator. In this study, a time-optimal rapidly-exploring random tree (TO-RRT) algorithm is proposed. First, this algorithm controls the target offset probability of the random tree through the potential field and introduces a node-first search strategy to make the random tree quickly escape from the repulsive potential field. Second, an attractive step size and a “step-size dichotomy” are proposed to improve the directional search ability of the random tree outside the repulsive potential field and solve the problem of an excessively large step size in extreme cases. Finally, a regression superposition algorithm is used to enhance the ability of the random tree to explore unknown space in the repulsive potential field. In this paper, independent experiments were carried out in MATLAB, MoveIt!, and real environments. The path-planning speed was increased by 99.73%, the path length was decreased by 17.88%, and the number of collision detections was reduced by 99.08%. The TO-RRT algorithm can be used to provide key technical support for the subsequent design of picking robots.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Science and Technology Plan Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference43 articles.

1. Real-time obstacle avoidance for manipulators and mobile robots

2. Rapidly-Exploring Random Trees: A New Tool for Path Planning http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf

3. Randomized Kinodynamic Planning

4. RRT-connect: An efficient approach to single-query path planning

5. Incremental Sampling-based Algorithms for Optimal Motion Planning

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3