A Gas Diffusion Analysis Method for Simulating Surface Nitrous Oxide Emissions in Soil Gas Concentrations Measurement

Author:

Bandara K. M. T. S.ORCID,Sakai KazuhitoORCID,Nakandakari Tamotsu,Yuge Kozue

Abstract

The detection of low gas concentrations from the soil surface demands expensive high-precision devices to estimate nitrous oxide (N2O) flux. As the prevalence of N2O concentration in the soil atmosphere is higher than its surface, the present study aimed to simulate N2O surface flux (CF) from soil gas measured in a soil-interred silicone diffusion cell using a low-cost device. The methodological steps included the determination of the diffusion coefficient of silicone membrane (Dslcn), the measurement of the temporal variations in the N2O gas in the soil (Csi) and on the surface (MF), and the development of a simulation process for predicting CF. Two experiments varying the procedure and periods of soil moisture saturation in each fertilized soil sample were conducted to detect Csi and MF. Using Dslcn and Csi, the variations in the soil gas (Csoil) were predicted by solving the diffusion equation using the implicit finite difference analysis method. Similarly, using six soil gas diffusivity models, the CF values were simulated from Csoil. For both experiments, statistical tests confirmed the good agreement of CF with MF for soil gas diffusivity models 4 and 5. We suggest that the tested simulation method is appropriate for predicting N2O surface emissions.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3