Crop performance, biological N fixation and pre-crop effect of pea ideotypes in an organic farming system

Author:

Gollner GabrieleORCID,Starz Walter,Friedel Jürgen K.

Abstract

Abstract Pea (Pisum sativum L.) is a valuable grain legume in organic crop rotations. Pea rotations provide nitrogen (N) to the system through N fixation and produce animal feed or human food. Because of the high susceptibility of pea to pests, diseases and weeds and due to low profitability, especially in organic systems, pea cropping intensity decreased in the last 15 years in Austria. Therefore, it is important to find strategies for improving pea cropping systems in organic systems, by increasing yields and providing a positive N balance. The objective of this study was to compare pea genotypes of selected field and fodder pea in pure and mixed pea stands for biomass performance, biological N fixation and pre-crop effect under dry site conditions in a 2-year study in Eastern Austria. Pea N fixation was estimated using the extended N-difference method, with oat as the reference crop. The highest grain yield was found for the leafed field pea, with 2.5 Mg dry mass (DM) ha−1, followed by the semi-leafless field pea with 2.1 Mg DM ha−1 and the pea-mixtures with 2.2 Mg DM ha−1. The field pea cultivars yielded more than the fodder pea cultivars with 1.6 Mg DM ha−1. The average N concentration in pea grains was 3.6 mg g−1. The fodder pea type contained 3.8 mg g−1, significantly more N (p < 0.0001) than the semi-leafless and leafed field pea. Pea N fixation ranged from 53 to 75 kg N ha−1, corresponding to 42–50% of N derived from the atmosphere (% Ndfa). No differences in N fixation were found among cultivars, types and field/fodder pea. The fodder pea exported less N from the field because of their lower grain yield. Therefore, the N balance (N-input − N-output) of fodder pea was positive, with + 3.4 kg N ha−1 compared to the negative N balance of − 0.6 to − 3.6 kg N ha−1 for the leafed field pea types. These differences were not reflected in the following winter wheat crop, where the DM grain yield was 3.6–3.9 Mg ha−1 with no differences between cultivars and ideotypes. The results demonstrate that leafed field pea could have a sufficient grain yield and fodder pea could produce high N concentration in the grains. Because there are no differences regarding the effect of pea types on the yield of the following crop, it can be concluded that all tested pea types are suitable for successful organic pea production under dry site conditions. While there were no negative effects on the subsequent crop, the different ideotypes and mixtures may be selected based on different management goals.

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

Reference47 articles.

1. Armstrong EL, Pate JS, Unkovich MJ (1994) N balance of field pea crops in South Western Australia, studied using the 15N natural abundance technique. Aust J Plant Physiol 21:533–549

2. Armstrong EL, Heenan DP, Pate JS, Unkovich MJ (1997) N benefits of lupin, field pea, and chickpea to wheat production in south-eastern Australia. Aust J Agric Res 48:39–47

3. Aufhammer W (1998) Getreide- und andere Körnerfruchtarten. Verlag Eugen Ulmer, Stuttgart

4. Aveline A, Domenach AM, Carrouée B, Crozat Y (1998) Compared effects of pea and wheat cultivation on the soil N balance: results of the follow-up of a long term trial. In: Proceedings of the 3rd European conference on grain legumes, Valladolid, pp 134–135

5. Baigorri H, Antolin MC, Sánchez-Diaz M (1999) Reproductive response of two morphologically different pea culitvars to drought. Eur J Agron 10:119–128

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3