Recognising Cattle Behaviour with Deep Residual Bidirectional LSTM Model Using a Wearable Movement Monitoring Collar

Author:

Wu Yiqi,Liu Mei,Peng Zhaoyuan,Liu Meiqi,Wang Miao,Peng YingqiORCID

Abstract

Cattle behaviour is a significant indicator of cattle welfare. With the advancements in electronic equipment, monitoring and classifying multiple cattle behaviour patterns is becoming increasingly important in precision livestock management. The aim of this study was to detect important cattle physiological states using a neural network model and wearable electronic sensors. A novel long short-term memory (LSTM) recurrent neural network model that uses two-way information was developed to accurately classify cattle behaviour and compared with baseline LSTM. Deep residual bidirectional LSTM and baseline LSTM were used to classify six behavioural patterns of cows with window sizes of 64, 128 and 256 (6.4 s, 12.8 s and 25.6 s, respectively). The results showed that when using deep residual bidirectional LSTM with window size 128, four classification performance indicators, namely, accuracy, precision, recall, and F1-score, achieved the best results of 94.9%, 95.1%, 94.9%, and 94.9%, respectively. The results showed that the deep residual bidirectional LSTM model can be used to classify time-series data collected from twelve cows using inertial measurement unit collars. Six aim cattle behaviour patterns can be classified with high accuracy. This method can be used to quickly detect whether a cow is suffering from bovine dermatomycosis. Furthermore, this method can be used to implement automated and precise cattle behaviour classification techniques for precision livestock farming.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3