Nondestructive Detection of Microcracks in Poultry Eggs Based on the Electrical Characteristics Model

Author:

Shi ChenboORCID,Wang Yuxin,Zhang Chun,Yuan JinORCID,Cheng Yanhong,Jia Baodun,Zhu ChangshengORCID

Abstract

The eggshell is the major source of protection for the inside of poultry eggs from microbial contamination. Timely detection of cracked eggs is the key to improving the edible rate of fresh eggs, hatching rate of breeding eggs and the quality of egg products. Different from traditional detection based on acoustics and vision, this paper proposes a nondestructive method of detection for eggshell cracks based on the egg electrical characteristics model, which combines static and dynamic electrical characteristics and designs a multi-layer flexible electrode that can closely fit the eggshell surface and a rotating mechanism that takes into account different sizes of eggs. The current signals of intact eggs and cracked eggs were collected under 1500 V of DC voltage, and their time domain features (TFs), frequency domain features (FFs) and wavelet features (WFs) were extracted. Machine learning algorithms such as support vector machine (SVM), linear discriminant analysis (LDA), decision tree (DT) and random forest (RF) were used for classification. The relationship between various features and classification algorithms was studied, and the effectiveness of the proposed method was verified. Finally, the method is proven to be universal and generalizable through an experiment on duck eggshell microcrack detection. The experimental results show that the proposed method can realize the detection of eggshell microcracks of less than 3 μm well, and the random forest model combining the three features mentioned above is proven to be the best, with a detection accuracy of cracked eggs and intact eggs over 99%. This nondestructive method can be employed online for egg microcrack inspection in industrial applications.

Funder

Tai’an Science and Technology Innovation Development Plan

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3