Use Of Deep Learning To Determine The Freshness Of Egg

Author:

SAHİN Hasan Alp1ORCID,ONDER Hasan2ORCID

Affiliation:

1. ONDOKUZ MAYIS ÜNİVERSİTESİ

2. ONDOKUZ MAYIS ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ

Abstract

The freshness of the egg is important for both hatching and human consumption. It is quite difficult to determine the freshness of the egg without damaging it with classical methods. Deep learning is a powerful method used to classify data without processing or with much less processing. In this study, 30 eggs were photographed as experimental material for 29 days and the images obtained were used as data. It is aimed to determine how many days old the eggs are, which are foldered according to the days of the photos obtained. As a result of the study, 91.78% valuation accuracy value was obtained. Obtaining inputs without preprocessing shows that the Deep learning method can be used when a fast decision is required and the machine needs to make its own decision.

Publisher

Igdir University

Reference29 articles.

1. Abdel-Nour, N., Ngadi, M., Prasher, S. and Karimi Y. (2011). Prediction of egg freshness and albumen quality using visible/near infrared spectroscopy. Foof Bioprocess Technol. 4:731-736.

2. Aboonajmi, M., & Najafabadi, T. A. (2014). Prediction of Poultry Egg Freshness Using Vis-Nir Spectroscopy with Maximum Likelihood Method. International Journal of Food Properties, 17(10), 2166-2176.

3. Aboonajmi, M., Saberi, A., Abbasian Najafabadi, T., & Kondo N. (2016). Quality assessment of poultry egg based on visible–near infrared spectroscopy and radial basis function networks. International Journal of Food Properties. 19 (2016), pp. 1163-1172, 10.1080/10942912.2015.1075215.

4. Anonymous (2016). United states department of agriculture. Shell eggs from farm to table. (Accessed date: 1.1.2017)https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahukewioxro93klrahvmfjqkhblvcgaqfgglmae&url=https%3a%2f%2fwww.fsis.usda.gov%2fwps%2fwcm%2fconnect%2f5235aa20-fee1–4e5b-86f58d6e09f351b6%2fshell_eggs_from_farm_to_table.pdf%3fmod%3dajperes&usg=afqjcnflrhj01jg7qhkkfx8gsc6snb3owq.

5. Anonymous (2017). European parliament and the council of the European union. 2017/745 of the European parliament and of the council of 5 April 2017 on medical devices, amending directive 2001/83/ec, regulation (ec) no 178/2002. https://eur-lex.europa.eu/eli/reg/2017/745/oj. (Accessed date: 10.10.2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3