Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan

Author:

Hasukawa Hiroyuki,Inoda Yumi,Toritsuka Satoshi,Sudo ShigetoORCID,Oura Noriko,Sano Tomohito,Shirato Yasuhito,Yanai JuntaORCID

Abstract

To investigate the effect of paddy-upland (PU) rotation system on greenhouse gas emissions, methane (CH4) and nitrous oxide (N2O) emissions were monitored for three years for a PU rotation field (four cultivations (wheat-soybean-rice-rice) over three years) and continuous paddy (CP) field on alluvial soil in western Japan. Soil carbon storage was also calculated using an improved Rothamsted Carbon (RothC) model. The net greenhouse gas balance was finally evaluated as the sum of CO2eq of the CH4, N2O and changes in soil carbon storage. The average CH4 emissions were significantly lower and the average N2O emissions were significantly higher in the PU field than those in the CP field (p < 0.01). On CO2 equivalent basis, CH4 emissions were much higher than N2O emission. In total, the average CO2eq emissions of CH4 plus N2O in the PU field (1.81 Mg CO2 ha−1 year−1) were significantly lower than those in the CP field (7.42 Mg CO2 ha−1 year−1) (p < 0.01). The RothC model revealed that the changes in soil carbon storage corresponded to CO2eq emissions of 0.57 and 0.09 Mg CO2 ha−1 year−1 in the both fields, respectively. Consequently, the net greenhouse gas balance in the PU and CP fields were estimated to be 2.38 and 7.51 Mg CO2 ha−1 year−1, respectively, suggesting a 68% reduction in the PU system. In conclusion, PU rotation system can be regarded as one type of the climate-smart soil management.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference48 articles.

1. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960

3. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment

4. FAOSTAT Databasehttp://faostat.fao.org/

5. Effect of organic matter application on methane emission from some Japanese paddy fields

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3