Effect of Bentonite and Barley Straw on the Restoration of the Biological Quality of Agriculture Soil Contaminated with the Herbicide Successor T 550 SE

Author:

Wyszkowska JadwigaORCID,Tomkiel MonikaORCID,Borowik AgataORCID,Baćmaga MałgorzataORCID,Kucharski JanORCID

Abstract

Environmentally safe ways are sought to prevent the accumulation and to accelerate the degradation of herbicide active substances in agricultural soil. This study aimed to determine the effectiveness of finely-ground barley straw and bentonite in mitigating the effects of agricultural soil contamination with Successor T 550 SE. This herbicide was applied in the following doses: 0, 0.73, and 14.63 mg of the active substance per kg. The bentonite and spring barley straw were used at 10 g/kg. The action of these additives was compared to soil without the addition of straw and bentonite. The application of the experimental herbicide disturbed microbial systems, such as organotrophic bacteria, oligotrophic bacteria and their spores, actinobacteria, and fungi. A positive response to the herbicide dose of 14.63 mg a.s./kg was observed only for spores of oligotrophic bacteria. Further disturbances were observed in the agricultural soil biochemical properties, i.e., in the activity of dehydrogenases, urease, catalase, acid, and alkaline phosphatase, arylsulfatase, and β-glucosidase. A significant decrease in the activity of dehydrogenases, acid phosphatase, and arylsulfatase was observed following the application of 14.63 mg a.s./kg. The yield of maize decreased following the application of the analysed plant protection agent. Based on the soil quality index (BA), the addition of straw was more effective in restoring soil homeostasis than bentonite. Both bentonite and straw can be successfully used to improve agricultural soil biological activity. However, more effective mitigation of the negative effects of the herbicide in soil was observed in objects supplemented with barley straw. This improved the microbiological and biochemical properties of the soil. Barley straw was more effective than bentonite in restoring soil biological balance.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3