Design and Key Parameter Optimization of Conic Roller Shelling Device Based on Walnut Moisture-Regulating Treatments

Author:

Wang Jiannan,Liu Minji,Wu Huichang,Peng Jinyi,Peng Baoliang,Yang Yanshan,Cao Minzhu,Wei Hai,Xie Huanxiong

Abstract

The quality of walnuts deteriorates owing to the poor quality of the shelling equipment. The improvement of shelling quality is urgently required for walnut processing. In this study, systematic research was carried out on the changes in walnut mechanical properties, mechanical model of walnut shelling, and the key parameters of the equipment. The key parameters were determined as the angles of the shelling conic roller (X1), speeds of the shelling conic roller (X2), clearance between the shelling conic roller and the static roller (X3), and the moisture content of walnuts (X4). The Box–Behnken design method was used for the experimental design, an analysis of variance was applied to determine the graded significance of each variable on the rate of high-quality kernel (RHQK) and rate of shell rushing (RSC), and the multi-objective optimization method was used to obtain the optimal parameters for RHQK and RSC. The ranking of factors affecting RHQK and RSC were: (X3) > (X4) > (X2) > (X1) for RHQK, and (X2) > (X3) > (X4) > (X1) for RSC. The ranks of significant interactive effects among the factors were as follows: (X1 X2) > (X2 X3) for RHQK and (X2 X3) > (X3 X4) > (X2 X4) for RSC. The multi-objective optimization results showed that the optimal combination was X1 = 15.83°, X2 = 17.93 rpm, X3 = 45 mm, and X4 = 9.5%, yielding RHQK = 84.54%, and RSC = 99.15%. The verification test of the optimal results further illustrates the accuracy of the optimization. The obtained results showed that the quality of walnut shelling can be improved by adjusting the moisture content of walnuts and optimizing key parameters of the equipment. This method also represents a potential solution for improving the shelling quality of other nuts.

Funder

Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3