Qualitative Analysis of Lambda-Cyhalothrin on Chinese Cabbage Using Mid-Infrared Spectroscopy Combined with Fuzzy Feature Extraction Algorithms

Author:

Shen Yanjun,Wu XiaohongORCID,Wu Bin,Tan Yang,Liu Jinmao

Abstract

Excess pesticide residues on cabbage are harmful to humans. In this study, we propose an innovative strategy for a quick and nondestructive qualitative test of lambda-cyhalothrin residues on Chinese cabbage. Spectral profiles of Chinese cabbage leaf samples with different concentrations of surface residues of lambda-cyhalothrin were collected with an Agilent Cary 630 FTIR Spectrometer. Standard normal variate (SNV), multiplicative scatter correlation (MSC), and principle component analysis (PCA) were utilized to preprocess the spectra. Then, fuzzy Foley-Sammon transformation (FFST), fuzzy linear discriminant analysis (FLDA), and fuzzy uncorrelated discriminant transformation (FUDT) were employed to extract features from the spectra data. Finally, k-nearest neighbor (kNN) was applied to classify samples according to the concentration of lambda-cyhalothrin residue. The highest identification accuracy rates of FFST, FLDA, and FUDT were 100%, 97.22%, and 100%, respectively. FUDT performed the best considering the combination of accuracy rate and required computing time. We believe that mid-infrared spectroscopy combined with fuzzy uncorrelated discriminant analysis is an effective method to accurately and quickly conduct qualitative analyses of lambda-cyhalothrin residues on Chinese cabbages. This method may have applications in other crops and other pesticide residues.

Funder

National Natural Science Foundation of China

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3