Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art

Author:

Pari LuigiORCID,Latterini FrancescoORCID,Stefanoni WalterORCID

Abstract

The sustainable production of renewable energy is a key topic on the European community’s agenda in the next decades. The use of residuals from agriculture could not be enough to meet the growing demand for energy, and the contribution of vegetable oil to biodiesel production may be important. Moreover, vegetable oil can surrogate petroleum products in many cases, as in cosmetics, biopolymers, or lubricants production. However, the cultivation of oil crops for the mere production of industrial oil would arise concerns on competition for land use between food and non-food crops. Additionally, the economic sustainability is not always guaranteed, since the mechanical harvesting, in some cases, is still far from acceptable. Therefore, it is difficult to plan the future strategy on bioproducts production from oil crops if the actual feasibility to harvest the seeds is still almost unknown. With the present review, the authors aim to provide a comprehensive overview on the state of the art of mechanical harvesting in seven herbaceous oil crops, namely: sunflower (Heliantus annuus L.), canola (Brassica napus L.), cardoon (Cynara cardunculus L.), camelina (Camelina sativa (L.) Crantz), safflower (Carthamus tinctorius L.), crambe (Crambe abyssinica R. E. Fr.), and castor bean (Ricinus communis L.). The review underlines that the mechanical harvesting of sunflower, canola and cardoon seeds is performed relying on specific devices that perform effectively with a minimum seed loss. Crambe and safflower seeds can be harvested through a combine harvester equipped with a header for cereals. On the other hand, camelina and castor crops still lack the reliable implementation on combine harvesters. Some attempts have been performed to harvest camelina and castor while using a cereal header and a maize header, respectively, but the actual effectiveness of both strategies is still unknown.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3