Endophytic Bacteria Isolated from Tea Leaves (Camellia sinensis var. assamica) Enhanced Plant-Growth-Promoting Activity

Author:

Kabir Md. Humayun1,Unban Kridsada1,Kodchasee Pratthana1,Govindarajan Rasiravathanahalli Kaveriyappan1ORCID,Lumyong Saisamorn2,Suwannarach Nakarin2ORCID,Wongputtisin Pairote3,Shetty Kalidas4ORCID,Khanongnuch Chartchai15ORCID

Affiliation:

1. School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mueang, Chiang Mai 50100, Thailand

2. Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand

3. Program in Biotechnology, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand

4. Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA

5. Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand

Abstract

Tea (Camellia sinensis var. assamica) is a traditional and economically important non-alcoholic beverage-producing plant grown in large plantations in the northern region of Thailand and has a diverse community of endophytic bacteria. In this study, a total of 70 bacterial isolates were isolated from healthy asymptomatic samples of tea leaves from five different tea gardens in Chiang Mai, Thailand. Based on 16S rDNA sequence analysis, these bacterial isolates were taxonomically grouped into 11 different genera, namely Bacillus, Curtobacterium, Enterobacter Microbacterium, Moraxella, Neobacillus, Priestia, Pseudarthrobacter, Pseudomonas, Sporosarcina, and Staphylococcus. All these isolates were evaluated for their potential to produce indole-3-acetic acid (IAA), siderophores, and cellulolytic enzymes while having phosphate-solubilizing and tannin tolerance capacity. Most isolated bacterial endophytes belonged to the Bacillus genus and exhibited multiple plant-growth-promoting abilities. All bacterial endophytes could produce varied concentrations of the indole-related compounds, and the strain Curtobacterium citreum P-5.19 had the highest production of IAA at 367.59 µg/mL, followed by Pseudarthrobacter enclensis P-3.12 at 266.97 µg/mL. Seventy-eight percent (78%) of the total isolates solubilized inorganic phosphate, while 77%, 65%, and 52% were positive for extracellular proteases, cellulases, and pectinases, respectively. Remarkably, 80% of the isolates were capable of growth on nutrient agar supplemented with 1% (w/v) tannic acid. C. citreum P-5.19 and P. enclensis P-3.12 were selected for evaluation of plant growth promotion, and it was found that both bacterial endophytes enhanced seed germination rate and improved seedling growth parameters such as fresh and/or dry weight, root length, and shoot lengths of sunflower and tomato seeds. The selected bacterial endophytes isolated from tea leaves in this study could be used in bioformulation for plant growth promotion and advancing sustainable agricultural practices contributing to the decreased use of chemical inputs. This is the first report of an endophytic bacterium, Pseudarthrobacter enclensis, being isolated from C. sinensis.

Funder

Office of Research Administration, Chiang Mai University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3