Recognition and Positioning of Fresh Tea Buds Using YOLOv4-lighted + ICBAM Model and RGB-D Sensing

Author:

Guo Shudan1,Yoon Seung-Chul2ORCID,Li Lei3,Wang Wei1ORCID,Zhuang Hong2,Wei Chaojie1,Liu Yang1,Li Yuwen1

Affiliation:

1. Beijing Key Laboratory of Optimization Design for Modern Agricultural Equipment, College of Engineering, China Agricultural University, Beijing 100083, China

2. Quality & Safety Assessment Research Unit, U. S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA

3. Zhanglou Town Government of Chengwu County, Heze 274205, China

Abstract

To overcome the low recognition accuracy, slow speed, and difficulty in locating the picking points of tea buds, this paper is concerned with the development of a deep learning method, based on the You Only Look Once Version 4 (YOLOv4) object detection algorithm, for the detection of tea buds and their picking points with tea-picking machines. The segmentation method, based on color and depth data from a stereo vision camera, is proposed to detect the shapes of tea buds in 2D and 3D spaces more accurately than using 2D images. The YOLOv4 deep learning model for object detection was modified to obtain a lightweight model with a shorter inference time, called YOLOv4-lighted. Then, Squeeze-and-Excitation Networks (SENet), Efficient Channel Attention (ECA), Convolutional Block Attention Module (CBAM), and improved CBAM (ICBAM) were added to the output layer of the feature extraction network, for improving the detection accuracy of tea features. Finally, the Path Aggregation Network (PANet) in the neck network was simplified to the Feature Pyramid Network (FPN). The light-weighted YOLOv4 with ICBAM, called YOLOv4-lighted + ICBAM, was determined as the optimal recognition model for the detection of tea buds in terms of accuracy (94.19%), recall (93.50%), F1 score (0.94), and average precision (97.29%). Compared with the baseline YOLOv4 model, the size of the YOLOv4-lighted + ICBAM model decreased by 75.18%, and the frame rate increased by 7.21%. In addition, the method for predicting the picking point of each detected tea bud was developed by segmentation of the tea buds in each detected bounding box, with filtering of each segment based on its depth from the camera. The test results showed that the average positioning success rate and the average positioning time were 87.10% and 0.12 s, respectively. In conclusion, the recognition and positioning method proposed in this paper provides a theoretical basis and method for the automatic picking of tea buds.

Funder

Wei Wang

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3