Recognition of mulberry leaf diseases based on multi-scale residual network fusion SENet

Author:

Wen Chunming,He Wangwang,Wu Wanling,Liang Xiang,Yang Jie,Nong Hongliang,Lan ZimianORCID

Abstract

Silkworms are insects with important economic value, and mulberry leaves are the food of silkworms. The quality and quantity of mulberry leaves have a direct impact on cocooning. Mulberry leaves are often infected with various diseases during the growth process. Because of the subjectivity and time-consuming problems in artificial identification of mulberry leaf diseases. In this work, a multi-scale residual network fusion Squeeze-and-Excitation Networks (SENet) is proposed for mulberry leaf disease recognition. The mulberry leaf disease dataset was expanded by performing operations such as brightness enhancement, contrast enhancement, level flipping and adding Gaussian noise. Multi-scale convolution was used instead of the traditional single-scale convolution, allowing the network to be widened to obtain more feature information and avoiding the overfitting phenomenon caused by the network piling up too deep. SENet was introduced into the residual network to enhance the extraction of key feature information of the model, thus improving the recognition accuracy of the model. The experimental results showed that the method proposed in this paper can effectively improve the recognition performance of the model. The recognition accuracy reached 98.72%. The recall and F1 score were 98.73% and 98.72% respectively. Compared with some other models, this model has better recognition effect and can provide technical reference for intelligent mulberry leaf disease detection.

Publisher

Public Library of Science (PLoS)

Reference25 articles.

1. Automatic identification of male and female silkworm pupae based on deep convolutional neural network;Y Yu;Science of Sericulture,2020

2. Mulberry leaf disease detection using yolo;MP Reddy;International Journal of Advance Research, Ideas and Innovations in Technology,2021

3. Mulberry Leaf Development and Utilization Status and Prospects;W Du;China Sericulture,2022

4. Introduction to the occurrence and control of sericulture pests and diseases in Yongren County;C Tao;Yunnan Agriculture,2014

5. Online Detection Method of Tomato Early Blight Disease Based on SVM;Y Zhang;Transactions of the Chinese Society for Agricultural Machinery,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3