UAV-Based Remote Sensing for Soybean FVC, LCC, and Maturity Monitoring

Author:

Hu Jingyu1,Yue Jibo1ORCID,Xu Xin1,Han Shaoyu12,Sun Tong1,Liu Yang23,Feng Haikuan24,Qiao Hongbo1

Affiliation:

1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China

2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China

3. Key Lab of Smart Agriculture System, Ministry of Education, China Agricultural University, Beijing 100083, China

4. College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Timely and accurate monitoring of fractional vegetation cover (FVC), leaf chlorophyll content (LCC), and maturity of breeding material are essential for breeding companies. This study aimed to estimate LCC and FVC on the basis of remote sensing and to monitor maturity on the basis of LCC and FVC distribution. We collected UAV-RGB images at key growth stages of soybean, namely, the podding (P1), early bulge (P2), peak bulge (P3), and maturity (P4) stages. Firstly, based on the above multi-period data, four regression techniques, namely, partial least squares regression (PLSR), multiple stepwise regression (MSR), random forest regression (RF), and Gaussian process regression (GPR), were used to estimate the LCC and FVC, respectively, and plot the images in combination with vegetation index (VI). Secondly, the LCC images of P3 (non-maturity) were used to detect LCC and FVC anomalies in soybean materials. The method was used to obtain the threshold values for soybean maturity monitoring. Additionally, the mature and immature regions of soybean were monitored at P4 (mature stage) by using the thresholds of P3-LCC. The LCC and FVC anomaly detection method for soybean material presents the image pixels as a histogram and gradually removes the anomalous values from the tails until the distribution approaches a normal distribution. Finally, the P4 mature region (obtained from the previous step) is extracted, and soybean harvest monitoring is carried out in this region using the LCC and FVC anomaly detection method for soybean material based on the P4-FVC image. Among the four regression models, GPR performed best at estimating LCC (R2: 0.84, RMSE: 3.99) and FVC (R2: 0.96, RMSE: 0.08). This process provides a reference for the FVC and LCC estimation of soybean at multiple growth stages; the P3-LCC images in combination with the LCC and FVC anomaly detection methods for soybean material were able to effectively monitor soybean maturation regions (overall accuracy of 0.988, mature accuracy of 0.951, immature accuracy of 0.987). In addition, the LCC thresholds obtained by P3 were also applied to P4 for soybean maturity monitoring (overall accuracy of 0.984, mature accuracy of 0.995, immature accuracy of 0.955); the LCC and FVC anomaly detection method for soybean material enabled accurate monitoring of soybean harvesting areas (overall accuracy of 0.981, mature accuracy of 0.987, harvested accuracy of 0.972). This study provides a new approach and technique for monitoring soybean maturity in breeding fields.

Funder

the Henan Province Science and Technology Research Project

the National Natural Science Foundation of China

the Joint Fund of Science and Technology Research Development program (Application Research) of Henan Province, China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3