An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture

Author:

Lin Sen1,Xiu Yucheng2,Kong Jianlei2ORCID,Yang Chengcai2ORCID,Zhao Chunjiang23

Affiliation:

1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China

2. National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China

3. Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

In modern agriculture and environmental protection, effective identification of crop diseases and pests is very important for intelligent management systems and mobile computing application. However, the existing identification mainly relies on machine learning and deep learning networks to carry out coarse-grained classification of large-scale parameters and complex structure fitting, which lacks the ability in identifying fine-grained features and inherent correlation to mine pests. To solve existing problems, a fine-grained pest identification method based on a graph pyramid attention, convolutional neural network (GPA-Net) is proposed to promote agricultural production efficiency. Firstly, the CSP backbone network is constructed to obtain rich feature maps. Then, a cross-stage trilinear attention module is constructed to extract the abundant fine-grained features of discrimination portions of pest objects as much as possible. Moreover, a multilevel pyramid structure is designed to learn multiscale spatial features and graphic relations to enhance the ability to recognize pests and diseases. Finally, comparative experiments executed on the cassava leaf, AI Challenger, and IP102 pest datasets demonstrates that the proposed GPA-Net achieves better performance than existing models, with accuracy up to 99.0%, 97.0%, and 56.9%, respectively, which is more conducive to distinguish crop pests and diseases in applications for practical smart agriculture and environmental protection.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

MOE (Ministry of Education in China) Project of Humanities and Social Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3