AM-MSFF: A Pest Recognition Network Based on Attention Mechanism and Multi-Scale Feature Fusion

Author:

Zhang Meng1ORCID,Yang Wenzhong12ORCID,Chen Danny1,Fu Chenghao1,Wei Fuyuan1

Affiliation:

1. School of Computer Science and Technology, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830017, China

Abstract

Traditional methods for pest recognition have certain limitations in addressing the challenges posed by diverse pest species, varying sizes, diverse morphologies, and complex field backgrounds, resulting in a lower recognition accuracy. To overcome these limitations, this paper proposes a novel pest recognition method based on attention mechanism and multi-scale feature fusion (AM-MSFF). By combining the advantages of attention mechanism and multi-scale feature fusion, this method significantly improves the accuracy of pest recognition. Firstly, we introduce the relation-aware global attention (RGA) module to adaptively adjust the feature weights of each position, thereby focusing more on the regions relevant to pests and reducing the background interference. Then, we propose the multi-scale feature fusion (MSFF) module to fuse feature maps from different scales, which better captures the subtle differences and the overall shape features in pest images. Moreover, we introduce generalized-mean pooling (GeMP) to more accurately extract feature information from pest images and better distinguish different pest categories. In terms of the loss function, this study proposes an improved focal loss (FL), known as balanced focal loss (BFL), as a replacement for cross-entropy loss. This improvement aims to address the common issue of class imbalance in pest datasets, thereby enhancing the recognition accuracy of pest identification models. To evaluate the performance of the AM-MSFF model, we conduct experiments on two publicly available pest datasets (IP102 and D0). Extensive experiments demonstrate that our proposed AM-MSFF outperforms most state-of-the-art methods. On the IP102 dataset, the accuracy reaches 72.64%, while on the D0 dataset, it reaches 99.05%.

Funder

National Key Research and Development Program of China

Key Research and Development Program of the Autonomous Region

National Natural Science Foundation of China

Tianshan Elite Science and Technology Innovation Leading Talents Program of the Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3