Machine Learning Techniques for Estimating Soil Moisture from Smartphone Captured Images

Author:

Hossain Muhammad Riaz Hasib1,Kabir Muhammad Ashad12ORCID

Affiliation:

1. School of Computing, Mathematics, and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia

2. Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia

Abstract

Precise Soil Moisture (SM) assessment is essential in agriculture. By understanding the level of SM, we can improve yield irrigation scheduling which significantly impacts food production and other needs of the global population. The advancements in smartphone technologies and computer vision have demonstrated a non-destructive nature of soil properties, including SM. The study aims to analyze the existing Machine Learning (ML) techniques for estimating SM from soil images and understand the moisture accuracy using different smartphones and various sunlight conditions. Therefore, 629 images of 38 soil samples were taken from seven areas in Sydney, Australia, and split into four datasets based on the image-capturing devices used (iPhone 6s and iPhone 11 Pro) and the lighting circumstances (direct and indirect sunlight). A comparison between Multiple Linear Regression (MLR), Support Vector Regression (SVR), and Convolutional Neural Network (CNN) was presented. MLR was performed with higher accuracy using holdout cross-validation, where the images were captured in indirect sunlight with the Mean Absolute Error (MAE) value of 0.35, Root Mean Square Error (RMSE) value of 0.15, and R2 value of 0.60. Nevertheless, SVR was better with MAE, RMSE, and R2 values of 0.05, 0.06, and 0.96 for 10-fold cross-validation and 0.22, 0.06, and 0.95 for leave-one-out cross-validation when images were captured in indirect sunlight. It demonstrates a smartphone camera’s potential for predicting SM by utilizing ML. In the future, software developers can develop mobile applications based on the research findings for accurate, easy, and rapid SM estimation.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference43 articles.

1. Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications;Chatterjee;Sustain. Comput. Inform. Syst.,2020

2. Estimation of soil moisture using decision tree regression;Pekel;Theor. Appl. Climatol.,2020

3. Soil moisture prediction using shallow neural network;Prakash;Int. J. Adv. Res. Eng. Technol.,2020

4. A soil moisture estimation framework based on the CART algorithm and its application in China;Han;J. Hydrol.,2018

5. Estimation of the moisture content of tropical soils using colour images and artificial neural networks;Zanetti;Catena,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3