Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology

Author:

Zhou Huitao,Jia Weidong,Li Yong,Ou Mingxiong

Abstract

The accurate detection of canopy characteristics is the basis of precise variable spraying. Canopy characteristics such as canopy density, thickness and volume are needed to vary the pesticide application rate and adjust the spray flow rate and air supply volume. Canopy thickness is an important canopy dimension for the calculation of tree canopy volume in pesticide variable spraying. With regard to the phenomenon of ultrasonic waves with multiple reflections and the further analysis of echo signals, we found that there is a proportional relationship between the canopy thickness and echo interval time. In this paper, we propose a method to calculate canopy thickness using echo signals that come from ultrasonic sensors. To investigate the application of this method, we conducted a set of lab-based experiments with a simulated canopy. The results show that we can accurately estimate canopy thickness when the detection distance, canopy density, and canopy thickness range between 0.5and 1.5 m, 1.2 and 1.4, and 0.3and 0.6 m, respectively. The relative error between the estimated value and actual value of the simulated canopy thickness is no higher than 8.8%. To compare our lab results with trees in the field, we measured canopy thickness from three naturally occurring Osmanthus trees (Osmanthus fragrans Lour). The results showed that the mean relative errors of three Osmanthus trees are 19.2%, 19.4% and 18.8%, respectively. These results can be used to improve measurements for agricultural production that includes both orchards and facilities by providing a reference point for the precise application of variable spraying.

Funder

Ningxia Hui Autonomous Region science and technology key R&D project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3