Effect of Oil Acoustic Properties on Film Thickness Measurement by Ultrasound Using Spring and Resonance Models

Author:

Piovesan Alvaro S.12ORCID,Schirru Michele3,Tatzgern Fabio3,Medeiros Jorge L. B.1ORCID,Costa Henara L.12ORCID

Affiliation:

1. School of Engineering, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil

2. Graduate Program on Materials Science and Engineering, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil

3. Austrian Center for Competence on Tribology (AC2T), 2700 Wiener Neustadt, Austria

Abstract

The principle of reflection of ultrasonic waves at lubricated interfaces has been widely studied in recent years using different models. In this work, two different models (the spring model and the resonance model) were used to verify the influence of the acoustic properties of four different lubricating oils. A simple three-layer configuration was used, where carefully prepared, well-controlled gaps between stainless steel plates were established to accommodate a drop of oil. Optical measurements showed that the gaps formed were: gap 1 = 11 µm, gap 2 = 85 µm, gap 3 = 100 µm, and gap 4 = 170 µm. The smaller gap (11 µm) was found to be in the limit measurement range using the spring model for the sensor used in this work (14 MHz), whereas the resonance method was used for the thicker gaps. For the resonance model, the use of the phase spectra helped the identification of the resonance frequencies. The results showed good agreement between the measured thicknesses and the nominal gap values. There was little effect of the acoustic properties of the oils on the measured values, with the largest discrepancies found for the oil with the highest speed of sound (PAO4). This new way to characterize oil properties in a thin gap, where the material and geometry of the contact are fully characterized, enables us to compare different measurement methods and understand their sensitivity when testing similar materials of the same class of lubricants, as small deviations are crucial in real-life applications.

Funder

CNPq/Brazil via the INCT CT Trib

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3