Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products

Author:

Wyszkowska Jadwiga1ORCID,Borowik Agata1ORCID,Zaborowska Magdalena1ORCID,Kucharski Jan1ORCID

Affiliation:

1. Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland

Abstract

Investigations into the effective, fast, and economically viable remediation of soils polluted with petroleum-derived products are still relevant. The vegetative pot experiment was conducted at the Didactic-Experimental Garden greenhouse (NE, Poland, 53.759° N, 20.452° E) on loamy sand (LS) and sandy loam (SL) soils. Its main research objective was to assess the effectiveness of biochar (B), halloysite (H) and alginite (A) in the biological regeneration of contaminated soil diesel oil (DO) and petrol (P). The assessment was conducted by determining the magnitude of the adverse impact of these xenobiotics on the growth and development of Zea mays, as well as the activity of seven soil enzymes. The impact of the tested contaminants and sorbents was assessed based on the impact factors (IF) of DO and P, as well as B, H, and A on Zea mays biomass and enzymatic activity of the soil. Soil contamination with petroleum-derived products disrupted the growth and development of Zea mays. DO had a stronger inhibitory effect on plant growth compared to P. Zea mays cultivated in LS, which was less resistant to the effects of these contaminants compared to that cultivated in SL. The impact of DO and P on enzyme activity depended on the soil texture. DO stimulated enzyme activity in LS and SL, while P only did so in LS. All remediation substances, and biochar in particular, led to an increase in plant biomass in the DO-contaminated soils. Both biochar, halloysite and alginite also improved the biochemical quality index (BA) of SL and LS. Despite the unquestionable remediation potential of the analyzed sorbents, their highest efficacy can only be achieved by their application on soils with physicochemical properties corresponding to their characteristics, which is a valuable guideline for further research.

Funder

University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Soil Science and Microbiology

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference123 articles.

1. Remediation of Soil Polluted with Petroleum Hydrocarbons and its Reuse for Agriculture: Recent Progress, Challenges, and Perspectives;Ambaye;Chemosphere,2022

2. Application of Environmentally Stimuli-Responsive Materials in the Development of Oil and Gas Field;Fu;J. Pet. Sci. Eng.,2022

3. Remediation of Soil and Water Contaminated with Petroleum Hydrocarbon: A Review;Ossai;Environ. Technol. Innov.,2020

4. Borowik, A., Wyszkowska, J., Kucharski, M., and Kucharski, J. (2019). Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health. Int. J. Environ. Res. Public. Health, 16.

5. (2023, July 13). Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the Control of Major-Accident Hazards Involving Dangerous Substances, Amending and Subsequently Repealing Council Directive 96/82/EC Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/dir/2012/18/oj.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3