Efficient and Low-Loss Cleaning Method for Non-Uniform Distribution of Threshed Materials Based on Multi-Wing Curved Combination Air Screen in Computational Fluid Dynamics/Discrete Element Method Simulations

Author:

Wang Longhai1,Chai Xiaoyu234,Huang Juan1,Hu Jinpeng234,Cui Zhihong234

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

3. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education & Jiangsu Province, Jiangsu University, Zhenjiang 212013, China

4. Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, China

Abstract

During the operation of the longitudinal axis flow threshing device of a combine harvester, the threshed materials form accumulations and blockages on both sides of the screen surface, severely affecting the harvesting process. To evenly distribute the materials on the screen and solve the blockage issue, a multi-wing curved combination centrifugal fan is designed to match the mass distribution of the threshed materials. The movement mechanism of rice threshed materials in the cleaning shoe of a longitudinal axis flow combine harvester is investigated using the coupled CFD-DEM simulation method. The cleaning efficiency and performance of the traditional straight-blade fan screen device and the newly designed cleaning device are compared and analyzed, and field tests are conducted. The results show that the trajectory of the threshed materials cleaned by the device equipped with the multi-wing curved combination centrifugal fan is consistent with the mass distribution of the materials separated by the longitudinal axis flow threshing device. The absolute value of the centroid velocity of the material group in the X/Y direction is greater than that of the traditional fan, indicating that the movement speed of the particle group in the optimized fan is greater than that of the traditional fan. Therefore, in the actual cleaning process, the optimized fan’s air flow distribution more effectively accelerates the movement speed of the threshed materials, increasing the amount of materials cleaned per unit time, thereby improving the cleaning efficiency. Field comparative tests show that the designed cleaning device reduced the cleaning loss rate by up to 25.00% and the impurity content rate by 32.20%, achieving efficient and low-damage cleaning of the combine harvester. The study demonstrates the effectiveness of the proposed method for evenly distributing the materials and provides important reference for the study of other piled particle distribution systems.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

Shandong Province Key R&D Scheme (Science and Technology Demonstration Project) Project

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3