Affiliation:
1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
2. Taizhou Xiechuang Agricultural Equipment Co., Ltd., Taizhou 225312, China
Abstract
The radial distribution of material feeding onto a screen surface is an important factor affecting vibration screening performance, and it is also the main basis for the optimization of the operating parameters of a vibration screening system. In this paper, based on near-infrared properties, a real-time measurement method for the mass flow rate of grain vibration feeding was proposed. A laser emitter and a silicon photocell were used as the measuring components, and the corresponding signal processing circuit mainly composed of a T-type I/V convertor, a voltage follower, a low-pass filter, and a setting circuit in series was designed. Calibration test results showed that the relationship between grain mass flow rate and output voltage could be described using the Gaussian regression model, and the coefficient of determination was greater than 0.98. According to the working principle of the grain cleaning system of combine harvesters, the dynamic characteristics of grain vibration feeding were analyzed using discrete element method (DEM) simulations, and the monitoring range of the sensor was determined. Finally, grain mass flow rate measurement tests were carried out on a vibration feeding test rig. The results indicated that the grain mass measurement error could be controlled within 5.0% with the average grain mass flow rate in the range of 3.0–5.0 g/mm·s. The proposed measurement method has potential application value in the uniform feeding control systems of vibration feeders.
Funder
Natural Science Foundation of China
Modern Agricultural Machinery Equipment and Technology Demonstration Project of Jiangsu Province
Graduate Research and Innovation Projects of Jiangsu Province
Priority Academic Program Development of Jiangsu Higher Education Institutions