Antifungal Activity of the Dry Biomass of Penicillium chrysogenum F-24-28 and Is Application in Combination with Azoxystrobin for Efficient Crop Protection

Author:

Karpova Nataliya V.ORCID,Yaderets Vera V.,Glagoleva Elena V.,Petrova Kseniya S.,Ovchinnikov Alexander I.,Dzhavakhiya Vakhtang V.

Abstract

The developing resistance of plant pathogenic fungi to commercial fungicides has become a serious problem for efficient plant disease control. The use of antifungal preparations based on living microorganisms or their metabolites represents one of the possible environmentally friendly approaches. However, since a complete rejection of chemical fungicides is impossible, the combining of biopreparations and fungicides may be considered a promising biocontrol approach. Promising strains for the development of antifungal biopreparations include Penicillium fungi producing various biologically active compounds with antimicrobial and antiviral activities. A dry biomass of the P. chrysogenum F-24-28 strain (DMP) obtained from the P. chrysogenum VKPM F-1310 strain by induced mutagenesis possessed a high antifungal efficiency. According to in vitro experiments, supplementation of agarized medium with DMP (7.5–10 g/L) resulted in a significant growth inhibition in several plant pathogenic Fusarium fungi. The combination of DMP with a commercial azoxystrobin-based fungicide resulted in a prolonged growth inhibition in F. oxysporum, F. graminearum and F. culmorum even at fungicide concentrations significantly below the recommended level (0.5–2.5 mg/L or 2.5–12.5 g/ha vs. the recommended 100–275 g/ha). These results demonstrate a possibility to develop an efficient environmentally friendly biopreparation suitable to control crop diseases caused by a wide range of plant pathogens, and to prevent a possible selection and spreading of resistant pathogen strains.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3