Weather Conditions and Biostimulants Influence Nitrogen Acquisition from Different Sources by Soybean Plants

Author:

Radzka ElżbietaORCID,Rymuza KatarzynaORCID,Wysokiński AndrzejORCID

Abstract

This study aimed to determine the influence of weather conditions (air temperature, precipitation and insolation) on the quantity of nitrogen taken up by soybean plants whose cultivation included an application of two biostimulants: Asahi and Improver, which have been approved for sale. An isotopic dilution method was used which involved an application of mineral fertilisers enriched with the isotope 15N (5%) to detect the quantity of nitrogen fixed from the atmosphere, acquired from the soil and taken up from the fertiliser. Microplots of 1 m2, organised to form larger units, were planted with soybean. The impact of meteorological conditions on the amount of nitrogen fixed by plants as influenced by the experimental biostimulants was estimated using regression trees based on the C&RT algorithm in STATISTICA 13.3. This procedure yielded regression trees which revealed that, irrespective of the test biostimulant, the quantity of nitrogen fixed from the atmosphere was mainly influenced by the air temperature in July, as indicated by the first and most significant branching of the tree. The poorest fixation of atmospheric nitrogen in plants was observed when the average 24-h air temperature in July was higher than 20.9 °C, the quantities being 20.61, 31.33 and 30.49 kg, respectively, in the control, Asahi- and Improver-treated plots. The superior nitrogen uptake from fertiliser, from 10.64 (for the control) to 14.98 kg (in the Improver-amended units), was found when the air temperatures recorded in July and June did not exceed, respectively, 20.9 and 13.15 °C, and the daily rainfall in July was up to 5.65 mm. The regression tree model associated with the quantity of nitrogen acquired by soybean plants from soil indicates that, just like atmospheric nitrogen and nitrogen taken up from fertiliser, the average daily air temperature in July was the major factor determining the first branching of the tree. When this temperature went beyond 20.9 °C, the lowest uptake of nitrogen from soil was found for control plants.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3