Tillage-Depth Verification Based on Machine Learning Algorithms

Author:

Pang Jing,Zhang Xuwen,Lin Xiaojun,Liu Jianghui,Du Xinwu,Han Jiangang

Abstract

In an analysis of the penetration resistance and tillage depth of post-tillage soil, four surface-layer discrimination methods, specifically, three machine learning algorithms—Kmeans, DBSCAN, and GMM—and a curve-fitting method, were used to analyze data collected from the cultivated and uncultivated layers. Among them, the three machine learning algorithms found the boundary between the tilled and untilled layers by analyzing which data points belonged to which layer to determine the depth of the soil in the tilled layer. The curve-fitting method interpreted the intersection among data from the fitted curves of the ploughed layer and the un-ploughed layer as the tillage depth. The three machine learning algorithms were used to process a standard data set for model evaluation. DBSCAN’s discrimination accuracy of this data set reached 0.9890 and its F1 score reached 0.9934, which were superior to those of the other two algorithms. Under standard experimental conditions, the ability of DBSCAN clustering to determine the soil depth was the best among the four discrimination methods, and the discrimination accuracy reached 90.63% when the error was 15 mm. During field-test verification, the discriminative effect of DBSCAN clustering was still the best among the four methods. However, the soil blocks encountered in the field test affected the test data, resulting in large errors in the processing results. Therefore, the combined RANSCA robust regression and DBSCAN clustering algorithm, which can eliminate interference from soil blocks in the cultivated layer and can solve the problem of large depth errors caused by soil blocks in the field, was used to process the data. After testing, when the RANSCA and DBSCAN combined method was used to process all samples in the field and the error was less than 20mm, the accuracy rate reached 82.69%. This combined method improves the applicability of discrimination methods and provides a new method of determining soil depth.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3