Abstract
The production of row crops in the Midwestern (Indiana) region of the US has been facing environmental and economic sustainability issues. There has been an increase in trend for the application of fertilizers (nitrogen & phosphorus), farm machinery fuel costs and decreasing labor productivity leading to non-optimized usage of farm inputs. Literature describes how sustainable practices such as profitability (return on investments), operational cost reduction, hazardous waste reduction, delivery performance and overall productivity might be adopted in the context of precision agriculture technologies (variable rate irrigation, variable rate fertilization, cloud-based analytics, and telematics for farm machinery navigation). The literature review describes low adoption of Internet of Things (IoT)-based precision agriculture technologies, such as variable rate fertilizer (39%), variable rate pesticide (8%), variable rate irrigation (4%), cloud-based data analytics (21%) and telematics (10%) amongst Midwestern row crop producers. Barriers to the adoption of IoT-based precision agriculture technologies cited in the literature include cost effectiveness, power requirements, wireless communication range, data latency, data scalability, data storage, data processing and data interoperability. Therefore, this study focused on exploring and understanding decision-making variables related to barriers through three focus group interview sessions conducted with eighteen (n = 18) subject matter experts (SME) in IoT- based precision agriculture practices. Dependency relationships described between cost, data latency, data scalability, power consumption, communication range, type of wireless communication and precision agriculture application is one of the main findings. The results might inform precision agriculture practitioners, producers and other stakeholders about variables related to technical and operational barriers for the adoption of IoT-based precision agriculture practices.
Funder
Wabash Heartland Innovation Network
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference38 articles.
1. (2020, December 18). USDA/NASS 2019 State Agriculture Overview for Indiana, Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=INDIANA.
2. Erickson, B., Lowenberg-DeBoer, J., and Bradford, J. (2017). Precision Agriculture Dealership Survey, Purdue University.
3. Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M., and Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17.
4. A life cycle framework of green IoT-based agriculture and its finance, operation, and management issues;Ruan;IEEE Commun. Mag.,2019
5. Castle, M.H., Lubben, B.D., and Luck, J.D. (2020, December 18). Factors Influencing the Adoption of Precision Agriculture Technologies by Nebraska Producers. Available online: https://digitalcommons.unl.edu/ageconworkpap/49/.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献