Estimation of Wheat Plant Height and Biomass by Combining UAV Imagery and Elevation Data

Author:

Wang DunliangORCID,Li Rui,Zhu Bo,Liu Tao,Sun ChengmingORCID,Guo WenshanORCID

Abstract

Aboveground biomass (AGB) is an important basis for wheat yield formation. It is useful to timely collect the AGB data to monitor wheat growth and to build high-yielding wheat groups. However, as traditional AGB data acquisition relies on destructive sampling, it is difficult to adapt to the modernization of agriculture, and the estimation accuracy of spectral data alone is low and cannot solve the problem of index saturation at later stages. In this study, an unmanned aerial vehicle (UAV) with an RGB camera and the real-time kinematic (RTK) was used to obtain imagery data and elevation data at the same time during the critical fertility period of wheat. The cumulative percentile and the mean value methods were then used to extract the wheat plant height (PH), and the color indices (CIS) and PH were combined to invert the AGB of wheat using parametric and non-parametric models. The results showed that the accuracy of the model improved with the addition of elevation data, and the model with the highest accuracy of multi-fertility period estimation was PLSR (PH + CIS), with R2, RMSE and NRMSE of 0.81, 1248.48 kg/ha and 21.77%, respectively. Compared to the parametric models, the non-parametric models incorporating PH and CIS greatly improved the prediction of AGB during critical fertility periods in wheat. The inclusion of elevation data therefore greatly improves the accuracy of AGB prediction in wheat compared to traditional spectral prediction models. The fusion of UAV-based elevation data and image information provides a new technical tool for multi-season wheat AGB monitoring.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3