Estimating Maize Crop Height and Aboveground Biomass Using Multi-Source Unmanned Aerial Vehicle Remote Sensing and Optuna-Optimized Ensemble Learning Algorithms

Author:

Li Yafeng12,Li Changchun2,Cheng Qian1,Duan Fuyi1,Zhai Weiguang1,Li Zongpeng1,Mao Bohan1,Ding Fan1,Kuang Xiaohui1,Chen Zhen1ORCID

Affiliation:

1. Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China

2. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

Accurately assessing maize crop height (CH) and aboveground biomass (AGB) is crucial for understanding crop growth and light-use efficiency. Unmanned aerial vehicle (UAV) remote sensing, with its flexibility and high spatiotemporal resolution, has been widely applied in crop phenotyping studies. Traditional canopy height models (CHMs) are significantly influenced by image resolution and meteorological factors. In contrast, the accumulated incremental height (AIH) extracted from point cloud data offers a more accurate estimation of CH. In this study, vegetation indices and structural features were extracted from optical imagery, nadir and oblique photography, and LiDAR point cloud data. Optuna-optimized models, including random forest regression (RFR), light gradient boosting machine (LightGBM), gradient boosting decision tree (GBDT), and support vector regression (SVR), were employed to estimate maize AGB. Results show that AIH99 has higher accuracy in estimating CH. LiDAR demonstrated the highest accuracy, while oblique photography and nadir photography point clouds were slightly less accurate. Fusion of multi-source data achieved higher estimation accuracy than single-sensor data. Embedding structural features can mitigate spectral saturation, with R2 ranging from 0.704 to 0.939 and RMSE ranging from 0.338 to 1.899 t/hm2. During the entire growth cycle, the R2 for LightGBM and RFR were 0.887 and 0.878, with an RMSE of 1.75 and 1.76 t/hm2. LightGBM and RFR also performed well across different growth stages, while SVR showed the poorest performance. As the amount of nitrogen application gradually decreases, the accumulation and accumulation rate of AGB also gradually decrease. This high-throughput crop-phenotyping analysis method offers advantages, such as speed and high accuracy, providing valuable references for precision agriculture management in maize fields.

Funder

National Key R&D Program of China

Central Public-Interest Scientific Institution Basal Research Fund

Fundamental Research Funds for the Universities of Henan Province

National Major Scientific Research Achievement Cultivation Fund of Henan Polytechnic University

Key Grant Technology Project of Henan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3