Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks

Author:

Zhang Beichen,Bao Yue

Abstract

Age estimation from human faces is an important yet challenging task in computer vision because of the large differences between physical age and apparent age. Due to the differences including races, genders, and other factors, the performance of a learning method for this task strongly depends on the training data. Although many inspiring works have focused on the age estimation of a single human face through deep learning, the existing methods still have lower performance when dealing with faces in videos because of the differences in head pose between frames, which can lead to greatly different results. In this paper, a combined system of age estimation and head pose estimation is proposed to improve the performance of age estimation from faces in videos. We use deep regression forests (DRFs) to estimate the age of facial images, while a multiloss convolutional neural network is also utilized to estimate the head pose. Accordingly, we estimate the age of faces only for head poses within a set degree threshold to enable value refinement. First, we divided the images in the Cross-Age Celebrity Dataset (CACD) and the Asian Face Age Dataset (AFAD) according to the estimated head pose degrees and generated separate age estimates for images with different poses. The experimental results showed that the accuracy of age estimation from frontal facial images was better than that for faces at different angles, thus demonstrating the effect of head pose on age estimation. Further experiments were conducted on several videos to estimate the age of the same person with his or her face at different angles, and the results show that our proposed combined system can provide more precise and reliable age estimates than a system without head pose estimation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3