LCA-GAN: Low-Complexity Attention-Generative Adversarial Network for Age Estimation with Mask-Occluded Facial Images

Author:

Nam Se Hyun1ORCID,Kim Yu Hwan1ORCID,Choi Jiho1ORCID,Park Chanhum1,Park Kang Ryoung1

Affiliation:

1. Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea

Abstract

Facial-image-based age estimation is being increasingly used in various fields. Examples include statistical marketing analysis based on age-specific product preferences, medical applications such as beauty products and telemedicine, and age-based suspect tracking in intelligent surveillance camera systems. Masks are increasingly worn for hygiene, personal privacy concerns, and fashion. In particular, the acquisition of mask-occluded facial images has become more frequent due to the COVID-19 pandemic. These images cause a loss of important features and information for age estimation, which reduces the accuracy of age estimation. Existing de-occlusion studies have investigated masquerade masks that do not completely occlude the eyes, nose, and mouth; however, no studies have investigated the de-occlusion of masks that completely occlude the nose and mouth and its use for age estimation, which is the goal of this study. Accordingly, this study proposes a novel low-complexity attention-generative adversarial network (LCA-GAN) for facial age estimation that combines an attention architecture and conditional generative adversarial network (conditional GAN) to de-occlude mask-occluded human facial images. The open databases MORPH and PAL were used to conduct experiments. According to the results, the mean absolution error (MAE) of age estimation with the de-occluded facial images reconstructed using the proposed LCA-GAN is 6.64 and 6.12 years, respectively. Thus, the proposed method yielded higher age estimation accuracy than when using occluded images or images reconstructed using the state-of-the-art method.

Funder

Basic Science Research Program

MSIT through the Basic Science Research Program

Information Technology Research Center

National Supercomputing Center

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3