Analysis of Depth Cameras for Proximal Sensing of Grapes

Author:

Parr BadenORCID,Legg MathewORCID,Alam FakhrulORCID

Abstract

This work investigates the performance of five depth cameras in relation to their potential for grape yield estimation. The technologies used by these cameras include structured light (Kinect V1), active infrared stereoscopy (RealSense D415), time of flight (Kinect V2 and Kinect Azure), and LiDAR (Intel L515). To evaluate their suitability for grape yield estimation, a range of factors were investigated including their performance in and out of direct sunlight, their ability to accurately measure the shape of the grapes, and their potential to facilitate counting and sizing of individual berries. The depth cameras’ performance was benchmarked using high-resolution photogrammetry scans. All the cameras except the Kinect V1 were able to operate in direct sunlight. Indoors, the RealSense D415 camera provided the most accurate depth scans of grape bunches, with a 2 mm average depth error relative to photogrammetric scans. However, its performance was reduced in direct sunlight. The time of flight and LiDAR cameras provided depth scans of grapes that had about an 8 mm depth bias. Furthermore, the individual berries manifested in the scans as pointed shape distortions. This led to an underestimation of berry sizes when applying the RANSAC sphere fitting but may help with the detection of individual berries with more advanced algorithms. Applying an opaque coating to the surface of the grapes reduced the observed distance bias and shape distortion. This indicated that these are likely caused by the cameras’ transmitted light experiencing diffused scattering within the grapes. More work is needed to investigate if this distortion can be used for enhanced measurement of grape properties such as ripeness and berry size.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3