Multi-Sensor Data Fusion Method Based on Self-Attention Mechanism

Author:

Lin Xuezhu12,Chao Shihan1,Yan Dongming1ORCID,Guo Lili12,Liu Yue1ORCID,Li Lijuan12

Affiliation:

1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology of the Ministry of Education, School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China

Abstract

In 3D reconstruction tasks, single-sensor data fusion based on deep learning is limited by the integrity and accuracy of the data, which reduces the accuracy and reliability of the fusion results. To address this issue, this study proposes a multi-sensor data fusion method based on a self-attention mechanism. A multi-sensor data fusion model for acquiring multi-source and multi-modal data is constructed, with the core component being a convolutional neural network with self-attention (CNN-SA), which employs CNNs to process multi-source and multi-modal data by extracting their features. Additionally, it introduces an SA mechanism to weigh and sum the features of different modalities, adaptively focusing on the importance of different modal data. This enables mutual support, complementarity, and correction among the multi-modal data. Experimental results demonstrate that the accuracy of the CNN-SA network is improved by 72.6%, surpassing the improvements of 29.9% for CNN-CBAM, 23.6% for CNN, and 11.4% for CNN-LSTM, exhibiting enhanced generalization capability, accuracy, and robustness. The proposed approach will contribute to the effectiveness of multi-sensor data fusion processing.

Funder

Key Research and Development Project of the Jilin Province Science and Technology Development Program

Zhongshan Social Public Welfare Science and Technology Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3