How Does the Built Environment Affect Drunk-Driving Crashes? A Spatial Heterogeneity Analysis

Author:

Wang Shaohua1,Liu Jianzhen2,Chen Ning3,Xiao Jinjian1,Wei Panyi4

Affiliation:

1. School of Automobile and Transportation, Tianjin University of Technology and Education, Tianjin 300222, China

2. JIAOKE Transport Consultants Ltd., Beijing 100191, China

3. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China

4. Research Institute of Highway Ministry of Transport, Beijing 100088, China

Abstract

In this research, 3356 alcohol-related traffic crashes were obtained from blood-alcohol test reports in Tianjin, China. Population density, intersection density, road density, and alcohol outlet densities, including retail density, entertainment density, restaurant density, company density, hotel density, and residential density, were extracted from 2114 traffic analysis zones (TAZs). After a spatial autocorrelation test, the multiple linear regression model (MLR), geographically weighted Poisson regression model (GWPR), and semi-parametric geographically weighted Poisson regression model (SGWPR) were utilized to explore the spatial effects of the aforementioned variables on drunk-driving crash density. The result shows that the SGWPR model based on the adaptive Gaussian function had the smallest AICc value and the best-fitting accuracy. The residential density and the intersection density are global variables, and the others are local variables that have different influences in different regions. Furthermore, we found that the influence of local variables in the economic–technological development area shows significantly different characteristics compared with other districts. Thus, a comprehensive consideration of spatial heterogeneity would be able to improve the effectiveness of the programs formulated to decrease drunk driving crashes.

Funder

Science and Technology Commissioner Project of Tianjin

Transportation Science and Technology Development Project of Tianjin

Scientific Research Project of Tianjin Education Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3