Ground Deformation Pattern Analysis and Evolution Prediction of Shanghai Pudong International Airport Based on PSI Long Time Series Observations

Author:

Bao Xin,Zhang RuiORCID,Shama Age,Li Song,Xie Lingxiao,Lv JichaoORCID,Fu Yin,Wu RenzheORCID,Liu Guoxiang

Abstract

Being built on the reclamation area, Shanghai Pudong International Airport (SPIA) has been undergoing uneven subsidence since the beginning of its operation in 1999. In order to explore the evolution characteristics of ground deformation in the SPIA reclamation area and further provide assurance for the airport’s safe operation, 141 Sentinel-1A images from October 2016 to September 2021 were selected to acquire time-series ground deformation observations by the StaMPS PSI processing procedure. We subsequently built a ground deformation prediction model using the Long Short Term Memory (LSTM) neural network for the short-term prediction of the SPIA deformation severity area. On this basis, the spatial-temporal evolution trends of SPIA ground deformation in the reclamation area were revealed concerning the influence and mode of action of geological conditions and environmental factors. Finally, we proposed targeted recommendations and strategies for the comprehensive ground deformation prevention and control needs of SPIA. The results indicated that the SPIA exhibits overall subsidence in the eastern part, with the maximum deformation rate reaching −57.29 mm/a. Meanwhile, the central and western part has a local uplift with the maximum deformation rate reaching 32.76 mm/a. The proposed LSTM ground deformation prediction model demonstrated excellent robustness in the region of uneven deformation, and the prediction results were in high agreement with the StaMPS PSI monitoring results. The time-series observations and prediction results are expected to provide references for the expansion project of SPIA and help the research of ground deformation and prevention in related fields.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3