Optimization and Evaluation of Widely-Used Total Suspended Matter Concentration Retrieval Methods for ZY1-02D’s AHSI Imagery

Author:

Zhu Penghang,Liu Yao,Li JunshengORCID

Abstract

Total suspended matter concentration (CTSM) is an important parameter in aquatic ecosystem studies. Compared with multispectral satellite images, the Advanced Hyperspectral Imager (AHSI) carried by the ZY1-02D satellite can capture finer spectral features, and the potential for CTSM retrieval is enormous. In this study, we selected seven typical Chinese inland water bodies as the study areas, and recalibrated and validated 11 empirical models and two semi-analytical models for CTSM retrieval using the AHSI data. The results showed that the semi-analytical algorithm based on the 697 nm AHSI-band achieved the highest retrieval accuracy (R2 = 0.88, average unbiased relative error = 34.43%). This is because the remote sensing reflectance at 697 nm was strongly influenced by CTSM, and the AHSI image spectra were in good agreement with the in-situ spectra. Although further validation is still needed in highly turbid waters, this study shows that AHSI images from the ZY1-02D satellite are well suited for CTSM retrieval in inland waters.

Funder

National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps

2. Remote sensing of inland waters: Challenges, progress and future directions

3. Remote sensing estimation of chlorophyll-a and total suspended matter concentration in Qiantang river based on GF-1/WFV data;Cheng;J. Yangtze River Sci. Res. Inst.,2019

4. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3