A Cost-Efficient MCSA-Based Fault Diagnostic Framework for SCIM at Low-Load Conditions

Author:

Okwuosa Chibuzo NwabufoORCID,Akpudo Ugochukwu EjikeORCID,Hur Jang-Wook

Abstract

In industry, electric motors such as the squirrel cage induction motor (SCIM) generate motive power and are particularly popular due to their low acquisition cost, strength, and robustness. Along with these benefits, they have minimal maintenance costs and can run for extended periods before requiring repair and/or maintenance. Early fault detection in SCIMs, especially at low-load conditions, further helps minimize maintenance costs and mitigate abrupt equipment failure when loading is increased. Recent research on these devices is focused on fault/failure diagnostics with the aim of reducing downtime, minimizing costs, and increasing utility and productivity. Data-driven predictive maintenance offers a reliable avenue for intelligent monitoring whereby signals generated by the equipment are harnessed for fault detection and isolation (FDI). Particularly, motor current signature analysis (MCSA) provides a reliable avenue for extracting and/or exploiting discriminant information from signals for FDI and/or fault diagnosis. This study presents a fault diagnostic framework that exploits underlying spectral characteristics following MCSA and intelligent classification for fault diagnosis based on extracted spectral features. Results show that the extracted features reflect induction motor fault conditions with significant diagnostic performance (minimal false alarm rate) from intelligent models, out of which the random forest (RF) classifier was the most accurate, with an accuracy of 79.25%. Further assessment of the models showed that RF had the highest computational cost of 3.66 s, while NBC had the lowest at 0.003 s. Other significant empirical assessments were conducted, and the results support the validity of the proposed FDI technique.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3