TSFN: A Novel Malicious Traffic Classification Method Using BERT and LSTM

Author:

Shi Zhaolei1,Luktarhan Nurbol1,Song Yangyang1,Yin Huixin1

Affiliation:

1. College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

Abstract

Traffic classification is the first step in network anomaly detection and is essential to network security. However, existing malicious traffic classification methods have several limitations; for example, statistical-based methods are vulnerable to hand-designed features, and deep learning-based methods are vulnerable to the balance and adequacy of data sets. In addition, the existing BERT-based malicious traffic classification methods only focus on the global features of traffic and ignore the time-series features of traffic. To address these problems, we propose a BERT-based Time-Series Feature Network (TSFN) model in this paper. The first is a Packet encoder module built by the BERT model, which completes the capture of global features of the traffic using the attention mechanism. The second is a temporal feature extraction module built by the LSTM model, which captures the time-series features of the traffic. Then, the global and time-series features of the malicious traffic are incorporated together as the final feature representation, which can better represent the malicious traffic. The experimental results show that the proposed approach can effectively improve the accuracy of malicious traffic classification on the publicly available USTC-TFC dataset, reaching an F1 value of 99.50%. This shows that the time-series features in malicious traffic can help improve the accuracy of malicious traffic classification.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel approach for application classification with encrypted traffic using BERT and packet headers;Computer Networks;2024-12

2. Feasibility of State Space Models for Network Traffic Generation;Proceedings of the 2024 SIGCOMM Workshop on Networks for AI Computing;2024-08-04

3. A Review of Advancements and Applications of Pre-Trained Language Models in Cybersecurity;2024 12th International Symposium on Digital Forensics and Security (ISDFS);2024-04-29

4. A Multi-Scenario Traffic Classification Method Based on Pretrained Encoder and Text Convolutional Neural Network;2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC);2024-03-15

5. Anomaly Detection Method for Integrated Encrypted Malicious Traffic Based on RFCNN-GRU;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3