Author:
Zhao Huiqi,Ma Yaowen,Fan Fang,Zhang Huajie
Publisher
Springer Nature Singapore
Reference30 articles.
1. Qazi, E.U.H., Faheem, M.H., Zia, T.: HDLNIDS: hybrid deep-learning-based network intrusion detection system. Appl. Sci. 13(8), 4921 (2023)
2. Zou, L., Luo, X., Zhang, Y., et al.: HC-DTTSVM: a network intrusion detection method based on decision tree twin support vector machine and hierarchical clustering. IEEE Access 11, 21404–21416 (2023)
3. Takeda, A.: Detection and analysis of intrusion attacks using deep neural networks. In: Barolli, L., Miwa, H., Enokido, T. (eds.) Advances in Network-Based Information Systems. NBiS 2022. LNNS, vol. 526, pp. 258–266. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14314-4_26
4. Zhang, Y., Wang, D., Wu, Y., et al.: Network intrusion detection based on apriori-kmeans algorithm. In: Jain, L.C., Kountchev, R., Tai, Y., Kountcheva, R. (eds.) 3D Imaging–Multidimensional Signal Processing and Deep Learning. SIST, vol. 297, pp. 101–109. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-2448-4_10
5. Farooq, M.S., Abbas, S., Sultan, K., et al.: A fused machine learning approach for intrusion detection system. Comput. Mater. Contin. 74(2), 2607–2623 (2023)