Abstract
Hydrodeoxygenation is an essential process for producing liquid transportation fuels. In this study, the effects of CoMo/γ-Al2O3 catalysts form and loading ratio on the hydrodeoxygenation upgrading of bio-oil were investigated in a batch reactor. Raw bio-oil was first oxidized with hydrogen peroxides and oxone to obtain the oxidized bio-oil with reduced levels of aldehydes and ketones, increasing the organic liquid yield during hydrodeoxygenation by suppressing the coke formation. CoMo/γ-Al2O3 was selected as the catalyst because of its low cost and commercial availability. The effect of the reduction and sulfidation of CoMo/γ-Al2O3 catalyst on the hydrodeoxygenation of the oxidized bio-oil was compared. The effect of the catalyst loading ratio on bio-oil hydrodeoxygenation using sulfided CoMo/γ-Al2O3 catalysts was also investigated. The research results showed that the sulfided CoMo/γ-Al2O3 catalyst facilitated the formation of hydrocarbons, while the reduced CoMo/γ-Al2O3 catalyst produced more phenols in the organic liquids. Moreover, a high sulfided catalyst loading ratio promoted the formation of hydrocarbons.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献