Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials

Author:

Li Jinghao,Yan Qiangu,Zhang XuefengORCID,Zhang Jilei,Cai Zhiyong

Abstract

Lignin graphene oxide was oxidized after Kraft lignin was graphitized by thermal catalytic conversion. The reduced lignin graphene oxide was derived from lignin graphene oxide through thermal reduction treatment. These Kraft lignin, lignin graphite, lignin graphene oxide, and reduced lignin graphene oxide were characterized by scanning electron microscopy, raman microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy and thermogravimetric analysis. The results showed lignin graphite converted from Kraft lignin had fewer layers with smaller lateral size than natural graphite. Moreover, lignin graphene oxide was successfully produced from lignin graphite by an oxidation reaction with an hour-long reaction time, which has remarkably shorter reaction time than that of graphene oxide made from natural graphite. Meanwhile, this lignin-derived graphene oxide had the same XRD, FTIR and Raman peaks as graphene oxide oxidized from natural graphite. The SEM, TEM, and AFM images showed that this lignin graphene oxide with 1–3 average layers has a smaller lateral size than that of graphene oxide made from natural graphite. Moreover, the lignin graphene oxide can be reduced to reduced lignin graphene oxide to fabricate graphene-based aerogel, wire, and film for some potential applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3