Evaluation of the Optimal Topic Classification for Social Media Data Combined with Text Semantics: A Case Study of Public Opinion Analysis Related to COVID-19 with Microblogs

Author:

Liang Qin,Hu Chunchun,Chen Si

Abstract

Online public opinion reflects social conditions and public attitudes regarding special social events. Therefore, analyzing the temporal and spatial distributions of online public opinion topics can contribute to understanding issues of public concern, grasping and guiding the developing trend of public opinion. However, how to evaluate the validity of classification of online public opinion remains a challenging task in the topic mining field. By combining a Bidirectional Encoder Representations from Transformers (BERT) pre-training model with the Latent Dirichlet Allocation (LDA) topic model, we propose an evaluation method to determine the optimal classification number of topics from the perspective of semantic similarity. The effectiveness of the proposed method was verified based on the standard Chinese corpus THUCNews. Taking Coronavirus Disease 2019 (COVID-19)-related geotagged posts on Weibo in Wuhan city as an example, we used the proposed method to generate five categories of public opinion topics. Combining spatial and temporal information with the classification results, we analyze the spatial and temporal distribution patterns of the five optimal public opinion topics, which are found to be consistent with the epidemic development, demonstrating the feasibility of our method when applied to practical cases.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3