Social Network Public Opinion Analysis Using BERT-BMA in Big Data Environment

Author:

Sun Hanqing1,Liu Zheng1,Lian Weimin1,Wang Guizhi1

Affiliation:

1. Henan University of Animal Husbandry and Economy, China

Abstract

The existing social network public opinion analysis methods have problems such as poor semantic expression quality and weak detection ability in short texts. Therefore, a social network public opinion analysis method based on BERT-BMA is proposed. To normalize the comment text, the rumor text is initially transferred to a word vector matrix using the BERT (Bidirectional Encoder Representations from Transformer) model. The BiLSTM-based network architecture is subsequently employed to acquire the trace features of data transmission. Ultimately, this study employs the multi-head attention mechanism to extract feature information that is more significant in the analysis of online public opinion by mining the dependency relationships between users, resulting in increasing ability to detect public opinion emergencies. The experimental outcomes indicate that the results on the Twitter data set and Weibo dataset are superior to other comparative models.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3