Evaluating the Implications of Varying Bluetooth Low Energy (BLE) Transmission Power Levels on Wireless Indoor Localization Accuracy and Precision

Author:

Qureshi Umair MujtabaORCID,Umair ZuneeraORCID,Hancke Gerhard PetrusORCID

Abstract

Bluetooth Low Energy (BLE) based Wireless Indoor Localization System (WILS) with high localization accuracy and high localization precision is a key requirement in enabling the Internet of Things (IoT) in today’s applications. In this paper, we investigated the effect of BLE signal variations on indoor localization caused by the change in BLE transmission power levels. This issue is not often discussed as most of the works on localization algorithms use the highest power levels but has important practical implications for energy efficiency, e.g., if a designer would like to trade-off localization performance and node lifetime. To analyze the impact, we used the established trilateration based localization model with two methods i.e., Centroid Approximation (CA) and Minimum Mean Square Error (MMSE). We observed that trilateration based localization with MMSE method outperforms the CA method. We further investigated the use of two filters i.e., Low Pass Filter (LPF) and Kalman Filter (KF) and evaluated their effects in terms of mitigating the random variations from BLE signal. In comparison to non-filter based approach, we observed a great improvement in localization accuracy and localization precision with a filter-based approach. Furthermore, in comparison to LPF based trilateration localization with CA, the performance of a KF based trilateration localization with MMSE is far better. An average of 1 m improvement in localization accuracy and approximately 50% improvement in localization precision is observed by using KF in trilateration based localization model with the MMSE method. In conclusion, with KF in trilateration based localization model with MMSE method effectively eliminates random variations in BLE RSS with multiple transmission power levels and thus results in a BLE based WILS with high accuracy and high precision.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3