Effect of Particle Size and Morphology of Siliceous Supplementary Cementitious Material on the Hydration and Autogenous Shrinkage of Blended Cement

Author:

Xu Xiaochuan12,Zhao Yunqi12,Gu Xiaowei12,Zhu Zhenguo12,Wang Fengdan12,Zhang Zaolin3

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, Shenyang 110819, China

3. School of Mathematics and Physical Sciences, University College London, London WC1E 6BT, UK

Abstract

Supplementary cementitious material (SCM) plays an important role in blended cement, and the effect of the particle size and morphology of siliceous supplementary cementitious material on hydration should not be ignored. In this study, 0.5 h and 1 h of wet grinding was applied to pretreat iron ore tailing powder (TP), and the divergence in pozzolanic behavior and morphology were investigated. Then, the treated TPs were used to replace the 30% cement contents in preparing blended cementitious paste, and the impact mechanism of morphology on performance was studied emphatically. M, the autogenous shrinkages of pastes were tested. Finally, hydration reaction kinetics was carried out to explore the hydration behavior, while X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the hydration product properties, respectively. Meanwhile, microscopy intrusion porosimetry (MIP) was also carried out to characterize the pore structures of hardened specimens. Results indicated that wet grinding has a dramatic effect on particle size and morphology, but hardly affects the phase assemblages and pozzolanic reactivity of TP, while the particle shape of TP changes from sub-circular to clavate and, finally, back to sub-circular. The results of hydration reaction kinetics, representing the morphology of particles, had a significant effect on hydration rate and total heat, and compared with the sub-circle one, the clavated particle could inhibit the hydration procedure. With the increasing grinding time, the compressive strength of cementitious paste was increased from 17.37% to 55.73%, and the micro-pore structure became denser; however, the autogenous shrinkage increased.

Funder

Special Project of National Natural Science Foundation of China

Science and Technology Plan Project of Shenyang

Fundamental Research Funds for the Central Universities

National Science and Technology Planning Project

Major Science and Technology Projects of Liaoning Province

Leading talents in Talent Engineering

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3