Phase-Field Simulation of Microstructure Formation in Gas-Atomized Al–Cu–Li–Mg Powders

Author:

Phyu May Pwint12ORCID,Adjei-Kyeremeh Frank1ORCID,Suwanpinij Piyada23,Raffeis Iris1ORCID,Apel Markus4ORCID,Bührig-Polaczek Andreas1

Affiliation:

1. Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany

2. The Sirindhorn Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand

3. Leibniz-Institute für Werkstofforientierte Technologien-IWT, Badgasteiner Straße 3, 28359 Bremen, Germany

4. ACCESS e.V., Intzestraße 5, 52072 Aachen, Germany

Abstract

Al–Cu–Li (2xxx series) powders for additive manufacturing processes are often produced by gas atomization, a rapid solidification process. The microstructural evolution of gas-atomized powder particles during solidification was investigated by phase-field simulations using the software tool MICRESS. The following topics were investigated: (1) the microsegregation of copper and lithium in the particle, and the impact of lithium addition on the formation of secondary phases in Al-2.63Cu and Al-2.63Cu-1.56Li systems, (2) the effect of magnesium on the nucleation and final mass fraction of T1 (Al2CuLi) growing from the melt, and (3) the effect of increased magnesium content on the T1 and Sʹ (AlCu2Mg) phase fractions. It is observed that the addition of lithium into the Al–Cu system leads to a decrease in the solid solubility of copper in the primary matrix; consequently, more copper atoms segregate in the interdendritic regions resulting in a greater mass fraction of secondary precipitates. Our result agrees with findings on the beneficial impact of magnesium on the nucleation and precipitation kinetics of T1 precipitates in the conventional casting process with further thermomechanical heat treatments. Moreover, it is observed that the increase in magnesium from 0.28 wt.% to 0.35 wt.% does not significantly affect the nucleation and the amount of the T1 phase, whereas a decrease in T1 phase fraction and a delay of T1 formation are encountered when magnesium content is further raised to 0.49 wt.%.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Reference42 articles.

1. Totten, G.E., and MacKenzie, D.S. (2003). Handbook of Aluminum, M. Dekker.

2. Aluminum Lithium Alloys (Al-Li-Cu-X)-New Generation Material for Aerospace Applications;Ahmed;AMM,2013

3. Dorin, T., Vahid, A., and Lamb, J. (2018). Fundamentals of Aluminium Metallurgy, Elsevier.

4. Physical metallurgy of aluminum-lithium alloys;Kulkarni;Bull. Mater. Sci.,1989

5. Prasad, N.E., Gokhale, A.A., and Wanhill, R.J.H. (2014). Aluminum-Lithium Alloys: Processing, Properties, and Applications, Elsevier, Butterworth-Heinemann.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3