Preheating Influence on the Precipitation Microstructure, Mechanical and Corrosive Properties of Additively Built Al–Cu–Li Alloy Contrasted with Conventional (T83) Alloy

Author:

Adjei-Kyeremeh Frank1ORCID,Pratesa Yudha2ORCID,Shen Xiao3,Song Wenwen34,Raffeis Iris1ORCID,Vroomen Uwe1,Zander Daniela2ORCID,Bührig-Polaczek Andreas1

Affiliation:

1. Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany

2. Chair of Corrosion and Corrosion Protection, Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany

3. Steel Institute, RWTH Aachen University, Intzestraße 1, 52072 Aachen, Germany

4. Institute of Materials Engineering (IfW), University of Kassel, Moencheberg Str. 3, 34125 Kassel, Germany

Abstract

In this paper, the high strength and lightweight Al–Cu–Li alloy (AA2099) is considered in as-built and preheated conditions (440 °C, 460 °C, 480 °C, 500 °C, and 520 °C). The purpose of this study is to investigate the influence of laser powder bed fusion (LPBF) in situ preheating on precipitation microstructure, mechanical and corrosive properties of LPBF-printed AA2099 alloy compared to the conventionally processed and heat-treated (T83) alloy. It is shown that precipitations evolve with increasing preheating temperatures from predominantly globular Cu-rich phases at lower temperatures (as-built, 440 °C) to more plate and rod-like precipitates (460 °C, 480 °C, 500 °C and 520 °C). Attendant increase with increasing preheating temperatures are the amount of low melting Cu-rich phases and precipitation-free zones (PFZ). Hardness of preheated LPBF samples peaks at 480 °C (93.6 HV0.1), and declines afterwards, although inferior to the T83 alloy (168.6 HV0.1). Preheated sample (500 °C) shows superior elongation (14.1%) compared to the T83 (11.3%) but falls short in tensile and yield strength properties. Potentiodynamic polarization results also show that increasing preheating temperature increases the corrosion current density (Icorr) and corrosion rate. Indicated by the lower oxide resistance (Rox), the Cu-rich phases compromise the integrity of the oxide layer.

Publisher

MDPI AG

Subject

General Materials Science

Reference65 articles.

1. Gruško, O.E., Ovsânnikov, B.D., and Ovčinnikov, V.V. (2017). Aluminum-Lithium Alloys: Process Metallurgy, Physical Metallurgy, and Welding, CRC Press/Taylor & Francis Group.

2. Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys;Lavernia;J. Mater. Sci.,1990

3. The structure and properties of splat-quenched aluminum alloy 2024 containing lithium additions;Sankaran;Mater. Sci. Eng.,1980

4. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy;Dorin;Mater. Sci. Eng. A,2014

5. Effect of Mn addition on microstructure and mechanical properties of cast Al–2Li–2Cu–0.8Mg–0.4Zn–0.2Zr alloy;Chen;J. Mater. Res.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3